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Accumulation of damaged DNA in hematopoietic stem cells
(HSC) is associated with chromosomal abnormalities, genomic
instability, and HSC aging and might promote hematological
malignancies with age. Despite this, the regulatory pathways
implicated in the HSC DNA damage response have not been
fully elucidated. One of the sources of DNA damage is reactive
oxygen species (ROS) generated by both exogenous and endog-
enous insults. Balancing ROS levels in HSC requires FOXO3,
which is an essential transcription factor for HSC maintenance
implicated in HSC aging. Elevated ROS levels result in defective
Fox03~’~ HSC cycling, among many other deficiencies. Here,
we show that loss of FOXO3 leads to the accumulation of DNA
damage in primitive hematopoietic stem and progenitor cells
(HSPC), associated specifically with reduced expression of
genes implicated in the repair of oxidative DNA damage. We
provide further evidence that Foxo3~’~ HSPC are defective in
DNA damage repair. Specifically, we show that the base excision
repair pathway, the main pathway utilized for the repair of oxi-
dative DNA damage, is compromised in Foxo3™’~ primitive
hematopoietic cells. Treating mice in vivo with N-acetylcysteine
reduces ROS levels, rescues HSC cycling defects, and partially
mitigates HSPC DNA damage. These results indicate that DNA
damage accrued as a result of elevated ROS in Foxo3™'~ mutant
HSPC is at least partially reversible. Collectively, our findings
suggest that FOXO3 serves as a protector of HSC genomic sta-
bility and health.
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The accumulation of damaged DNA compromises the
genomic stability of hematopoietic stem cells (HSC)® (1) and
may promote hematological malignancies, specifically with age
(2, 3). Reactive oxygen species (ROS) are one of the major
insults that induce DNA damage (4), including in normal
hematopoietic and leukemic stem cells. ROS are generated
both endogenously by cell metabolism or expression of onco-
proteins and exogenously by ionizing radiation and genotoxic
drugs (1, 5, 6). ROS induce single and double strand DNA
breaks as well as various species of oxidized nucleotides and are
implicated in the pathophysiology of hematological malignan-
cies (7). Thus, modulations of ROS may be used therapeutically
(7, 8). Cells, with distinct kinetics, constantly repair oxidative
damage using mainly the base excision repair (BER) pathway
(9). The relatively low levels of endogenous ROS in HSC restrict
damage to DNA (10); however, the impact of increasing ROS
levels on HSC DNA remains relatively unexplored (11). Impor-
tantly, the mechanism of oxidative DNA damage repair in
primitive hematopoietic cells remains poorly understood.

The transcription factor FOXO3 of the Forkhead family with
four (FOXO1, FOXO03, FOX04, and FOXO6) related members
maintains HSC quiescence by ensuring low levels of ROS (12,
13). FOXOs belong to an evolutionarily conserved family of
transcription factors that exert critical functions in the regula-
tion of aging and longevity, including humans (14, 15). FOXOs
are phosphorylated and inhibited mainly by AKT kinase down-
stream of the PI3K-signaling pathway. In addition to phosphor-
ylation by AKT and other kinases, FOXOs are modified by a
variety of post-translational modifications that together deter-
mine FOXOs’ functional output (14). Notably, in hematopoi-
etic stem and progenitor cells and in embryonic stem cells, AKT
is not the dominant regulator of FOXO function (16-20).
FOXOs are involved in an array of fundamental biological pro-

° The abbreviations used are: HSC, hematopoietic stem cell; ROS, reactive
oxygen species; HSPC, hematopoietic stem and progenitor cell; NAC,
N-acetylcysteine; BER, base excision repair; NER, nucleotide excision repair;
BM, bone marrow; 8-OHdG, 8-hydroxyguanosine; TBI, total body irradia-
tion; Gy, gray; MEF, mouse embryonic fibroblast; pol, polymerase; QRT,
quantitative RT; 7-AAD, 7-aminoactinomycin D; PE, phycoerythrin; IR, ion-
izing radiation; HR, homologous recombination.
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FIGURE 1. Foxo3~’~ hematopoietic stem and progenitor cells accumulate DNA damage at the steady state. A, ROS levels in WT versus Foxo3 ™~ LSK cells
(fold change of FITC fluorescence geometric mean normalized to that of WT). B, representative images of WT and Foxo3 ™/~ FACS-sorted LSK cells stained with
an anti-yH2AX antibody (left panels) and quantification of the percentage of positive cells (foci number >6) (n =40 cells analyzed per condition, two indepen-
dent experiments). **, p < 0.001. C, representative FACS plots for the gating strategy to analyze hematopoietic stem (LT and ST-HSC enriched in

Lin~Scal™cKit™* (LSK) population) and progenitor (Lin~cKit™) cells. SSC, side
gated nucleated BM cells, lineage negative (Lin—), LSK, and c-Kit™ myeloid

scatter; FSC, forward scatter. D, flow cytometry analysis of yH2AX positivity in
progenitors, as well as in LT-HSC (Lin~Scal" c-Kit"FIk2~CD34 ) and ST-HSC

(Lin-Sca1™c-Kit"FIk2~CD34") (n =4 mice per group). E, comet assay of freshly isolated WT and Foxo3 ™"~ LSK cells. % DNA in tail and Olive tail moment
parameters were used to quantify the DNA breaks levels. Data expressed as mean = S.D. (A, B, D, and E) Student’s t test. *, p < 0.05; **, p < 0.001; ***, p < 0.0002;

#*¥% p < 0.0001; ns, not significant.

cesses, including the regulation of metabolism and oxidative
stress, cell cycle, apoptosis, and DNA repair (14, 15).

Loss of FOXO3 results in oxidative stress-mediated mye-
loproliferation that does not progress, at least not rapidly
enough to have been detected, toward leukemia (12, 13, 21).
FOXO3 is intimately involved in hematopoietic malignancies,
as FOXO3 is found in chromosomal translocations of human
acute myeloid leukemia (22) and is inhibited in malignant
hematopoietic cells (18, 23-28). Despite these observations,
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FOXO3 is also required for the maintenance of both mouse and
human leukemic stem cells (29-31). In addition, FOXO3 is
implicated in HSC aging (32—34) and in stem cell pluripotency
(16). Given the importance of DNA damage response for aging
and malignancies of stem cells, we sought to explore the poten-
tial FOXO3 function in the regulation of DNA damage
response in HSC.

Here, we show that FOXO3, which is essential for the regu-
lation of oxidative stress in HSC (12, 13, 21, 35), is a key factor
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in the primitive hematopoietic cell DNA damage response, spe-
cifically in base excision repair, and it protects HSPC from oxi-
dative DNA damage under homeostasis. These findings raise
the possibility that DNA damage accrual as a result of loss of
FOXO3 function, as may occur with age, promotes HSC aging
(32-34), predisposes HSPCs to premature aging, and/or con-
tributes to hematopoietic stem cell malignant transformation
(18, 23, 29, 30).

Results

Foxo3~/~ Hematopoietic Stem and Progenitor Cells Accumu-
late Oxidative DNA Damage at the Steady State—Foxo3™ '~
LSK cells (Lin~Scal"c-Kit™) enriched for HSC accumulate
ROS under homeostasis (Fig. 14) (12, 13) as a result of defective
anti-oxidant enzyme expression and mitochondrial function
(12, 13, 36). Elevated ROS are associated with loss of Foxo3™"~
HSC quiescence (12, 13) and a delay at the G,/M cell cycle
checkpoint (13). We evaluated whether elevated ROS result in
defective DNA integrity that contributes to cell cycle abnor-
malities of Foxo3™"~ HSC.

Under homeostatic conditions, a significantly higher fraction
of freshly isolated Foxo3™'~ LSK cells exhibited enhanced phos-
phorylation of histone H2AX variant (yH2AX) (Fig. 1B), a sen-
sor of DNA double strand breaks (37). A highly elevated level of
damaged DNA was detected in Foxo3™’~ HSPC by both
yYH2AX immunofluorescence staining, in which cells with
more than six nuclear foci were considered as positive, and the
more sensitive flow cytometry assay, which enabled the quan-
tification of the amount of damage (Fig. 1B, n > 40 cells ana-
lyzed per condition and Fig. 1C; n = 5, * p < 0.05). Damaged
DNA accumulated in Foxo3~ '~ HSPC subpopulations, includ-
ing long term repopulating HSC (LT-HSC; LSK Flk2™ CD34 ")
and c-Kit" (Lin~Scal " c-Kit ") multipotent progenitor cells but
not in Foxo3~ '~ total bone marrow (BM) control cells (Fig. 1,C
for gating strategy, and D; n = 4 per genotype); although
YH2AX was relatively increased in lineage negative cells depleted
of mature blood cells and enriched for hematopoietic stem and
progenitor cells, it did not reach significance in the samples eval-
uated. Using alkaline single-cell gel electrophoresis (comet
assay), we further visualized the damage to single strand DNA
and quantified an approximate 3-fold increased damage level in
FACS-sorted Foxo3 '~ versus wild type (WT) LSK cells by the
use of (38) % of DNA in Tail and Olive tail moment parameters
(Fig. 1E; n = 6). These results confirmed the increased amount of
damaged DNA in Foxo3~'~ HSPC.

To evaluate whether ROS were involved in the accumulation of
DNA damage in Foxo3 "~ HSPC, we used the FLARE hOGG1
comet assay that specifically detects oxidative DNA damage. This
approach showed that oxidative DNA damage is significantly
increased in freshly isolated Foxo3 ™'~ versus WT HSPC (Fig. 2A
and B, representative comet images and quantification). Using a
specific probe that detects the main DNA oxidation lesion, 8-hy-
droxyguanosine (8-OHdG), by flow cytometry, we noted 8-OHdG
levels were increased in Foxo3 '~ LSK cells as compared with W'T
cells (Fig. 2C), although the difference did not reach significance in
the replicates analyzed (1 = 3). Altogether, these results indicate
that Foxo3~/~ HSPC DNA accumulates high levels of oxidative
insults.

SASBMB

FEBRUARY 17,2017 «VOLUME 292-NUMBER 7

A -hOGG1 + hOGG1
WT
1501 £ ~ 150 o
- O =
=0 * £Q
© O
£ 8 1001 - g9 100
:: < s
w ©
ZX 50 o % 50
=< >
o~ o =0
w o= L
0 : = ol —— =5
WT Foxo3" WT Foxo3™
101 p = 0.0757
g __ gl
£g
St 6 —T
0
ze
o 24
oLl =
WT Foxo3™

FIGURE 2. DNA damage accumulation in Foxo3~/~ HSPC s from oxidative
origin. A, representative images of WT cells submitted to comet assay with-
out hOGG1 (—hOGGT) or treated with hOGG1 (FLARE comet assay). B, FLARE-
hOGG1 comet assay in freshly isolated LSK cells. C, 8-OHdG levels were ana-
lyzed by FACS in WT and Foxo3™/~ LSK cells (n = 3; geometric mean of
fluorescence values ( X 10°) are shown). Data are expressed as mean *+ S.D.
Student's t test. ¥, p < 0.05; **, p < 0.001.

Scavenging ROS by NAC Decreases Foxo3 '~ HSPC DNA
Damage and Corrects the G,/M Delay—To investigate whether
ROS have any functional role in the accumulation of DNA dam-
age, mice were treated in vivo with NAC (100 mg/kg/day), a
source of glutathione for 14 days (Fig. 3A, schematic). As antic-
ipated, NAC treatment normalized ROS levels in Foxo3 "~
LSK cells without any significant impact on WT cells (Fig. 3B)
(13). Notably, NAC treatment led to a 2-fold decrease of
YH2AX levels in Foxo3 ”~ -treated as compared with non-
treated LSK cells (# = 3 per group; p < 0.05) (Fig. 3C). In
addition, the levels of DNA breaks in Foxo3 ”~ LSK cells, as
quantified by the % Tail DNA and the Olive tail moment, were
significantly reduced (2-fold) in response to NAC (Fig. 3D,
quantification in the right panel). Despite normalized ROS lev-
els (Fig. 3B), the % Tail DNA (p < 0.0007) and the Olive tail
moment (p < 0.00001) remained significantly higher in NAC-
treated Foxo3 ™"~ LSK cells as compared with WT controls (Fig.
3D), raising the possibility that not all damage to Foxo3 ™"~ LSK
DNA resulted from elevated ROS.

In addition to reducing DNA damage, NAC treatment nor-
malized the defective Foxo3™"~ cell cycle parameters (Fig. 4).
Increased numbers of LSK cells isolated from NAC-treated
Fox03™”~ mice were in the G, and G, phases of the cell cycle
and released from the G,/M delay. The decreased frequencies
of Foxo3~ "~ LSK cells that incorporated BrdU in vivo (Fig. 4, A
and B) and of Foxo3 /~ LT-HSC (LSK-CD34 ) Ki67-positive
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FIGURE 3. NAC treatment reduces DNA damage accumulation in Foxo3~/~ HSPC. A, schematic representation of the NAC treatment to which WT and
Foxo3~’~ mice were submitted for 14 days. IP, intraperitoneal. B, analysis of dichlorofluorescein staining of WT and Foxo3 ™"~ LSK cells isolated from mice
that were treated with NAC for 14-days (geometric mean values normalized to that of WT). C, yH2AX levels were analyzed by FACS after NAC treatment
(n = 6 per group, two independent experiments). D, alkaline comet assay analysis of FACS-sorted LSK cells from control and NAC-treated animals (n
=100 cells analyzed per group, two independent experiments). Representative images (left panels) and DNA break levels quantification by %DNA in Tail
and Olive tail moment (right panels). Data are expressed as mean *= S.D. Student’s t test. *, p < 0.05; **, p < 0.001; ***, p < 0.0002; ****

p < 0.0001.
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FIGURE 4. NAC treatment corrects the defective cell cycle of Foxo3~/~
HSPC. Cell cycle analysis on freshly isolated BM cells from WT and Foxo3™"~
mice treated for 14 days with NAC. A, representative FACS plots of BrdU stain-
ing, and B quantification of the percentage of LSK cells from control (vehicle)
and NAC-treated mice in G,-G;, S, or G,-M cell cycle phases. C, representative
FACS plots of Ki67-DAPI staining on gated LSK-CD34 ™~ cells; D, quantification
of the percentage of cells in Gy, G,, or S-G,-M cell cycle phases. n = 6 per
group, two independent experiments. Data expressed as mean = S.D.
Student'’s t test .*, p < 0.05.
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deficient LSK cells as compared with their WT counterparts.
The results were relatively similar when analyzed by either the
standard or the FLARE hOGG1 comet assays (Figs. 5, C and D);
the FLARE assay detected a more exacerbated DNA damage
(Fig. 5D), suggesting increased sensitivity to removal of base
damage such as those removed by the OGG1 DNA glycosylase.
These findings indicate that the repair of oxidative DNA insults
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FIGURE 5. Defective DNA repair machinery in Foxo3~/~ HSPC contributes to DNA damage accumulation. A, QRT-PCR analysis of expression of oxidative
DNA repair (BER and NER) genes in freshly isolated HSPC. Actnb was used as internal control, and expression was normalized to the WT samples. B, schematic
of FACS-sorted WT and Foxo3 ™/~ LSK cells treated ex vivo with 100 um H,0,. Cells were analyzed by alkaline comet assay (C) and comet FLARE-OGG1 (D) at the
indicated time points shown by green arrows (1, 2, or 4 h after treatment) E, flow cytometry analysis of apoptosis using annexin V-binding in freshly isolated LSK
cells treated for 1 h with 100 um H,0,. F, schematic representation of the OGG1 activity assay with BER molecular beacon; G, quantification of the assay
performed using lineage negative cells extracts from WT and Foxo3 ™/~ bone marrow (plot of mean + S.D. of the normalized fluorescence signals) (n = 6; two
independent experiments). Data expressed as mean = S.D. Student’s t test. *, p < 0.05; **, p < 0.001; ***, p < 0.0002; ****, p < 0.0001; ns, not significant.

might be compromised in Foxo3 "~ LSK cells. Despite the
increase in oxidative stress-mediated accumulation of damaged
DNA (Fig. 2) and consistent with mitochondrial defects
observed in Foxo3-null HSPC (36), apoptosis was increased
only mildly but significantly in in vitro hydrogen peroxide-
treated Foxo3 ™"~ LSK cells, suggesting that Foxo3 ™"~ LSK cells
might exhibit some resistance to oxidative stress-mediated apo-
ptosis (Fig. 5E).

To address a possible DNA repair defect, we used a recently
developed (39) BER molecular beacon assay to quantitatively
evaluate APE1 endonuclease activity and OGG1-mediated gly-
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cosylase activity for removal of the 8-oxo-dG lesion in an 8-oxo-
dG/A base pair (Fig. 5F, schematic). Using this fluorescent real
time quantitative assay, we found no difference in the APE1 endo-
nuclease activity of WT and Foxo3 ”~ primitive hematopoietic
cells (data not shown). However, compared with WT controls, the
glycosylase activity of OGG1 in Foxo3 ™~ primitive hematopoietic
cells was significantly reduced (Fig. 5G, n = 6, p = 0.003).
Despite using three different commercial (goat, rabbit, and
mouse) anti-mouse OGG1 antibodies probing wild type and
OGG1-deficient mouse embryonic fibroblasts (MEFs), we were
unable to confirm their specific binding to OGG1 protein (data

JOURNAL OF BIOLOGICAL CHEMISTRY 3009
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not shown). Using the same approach, we confirmed that anti-
DNA Polf3 and anti-XRCC1 antibodies specifically bind to their
targets in wild type MEF but not in pol 87/~ and XRCC1~/~
MEFs, respectively (Fig. 64). We further showed that whereas
the expression of pol B is increased, the expression of XRCC1 is
significantly reduced in HSPC in the absence of Foxo3 (Fig. 6,
B-C). XRCC1 is an essential element of base excision repair
(40). Loss of FOXO3 may lead to discrepancies between mRNA
and protein expressions (41, 42). Given the critical OGG1-
XRCC1 interaction for BER, it is likely that reduced expression
of XRRC1 mediates the defective OGGI1 activity (43—45).
Together with XRCC1 requirement for recruiting pol 3 to dam-
aged DNA (46), these results support the notion that BER-me-
diated DNA repair in HSPC is dependent on FOXO3.
Foxo3~"~ Hematopoietic Stem and Progenitor Cells Respond
Normally to Ionizing Radiation Insult—To investigate Foxo3 "~
HSPC response to additional insults, we used ionizing radiation
(IR). LSK cells freshly isolated from WT and Foxo3 '~ mice
and kept in vitro displayed similar numbers of yH2AX nuclear
foci 2 h after 10 Gy IR (Fig. 7A). In addition, WT and Foxo3 ™"~
c-Kit* hematopoietic progenitor cells responded similarly to 4
Gy IR, a dose to which HSPC are relatively tolerant (Fig. 7B)
(47). More precise quantitative analysis by FACS 2 h after LSK
and c-Kit" multipotent progenitor cells were submitted to a 4
Gy IR dose confirmed that the capacity of Foxo3™”~ HSPC in
accumulating yH2AX is similar to WT cells (Fig. 7B). Similar

3010 JOURNAL OF BIOLOGICAL CHEMISTRY

results were obtained by in vivo total body irradiation (TBI).
WT and Foxo3~”~ LSK cells isolated 6 or 24 h after a 4 Gy TBI
showed similar levels of DNA breaks (Fig. 7, C and D). Interest-
ingly, although the expression of genes involved in homologous
recombination (HR), such as Brcal, Brca2, and Rad51, was not
modulated by the loss of FOXO3 in HSPC, genes implicated in
the error-prone non-homologous end-joining pathway, which
is the main repair mechanism of damaged DNA in HSPC (47)
were significantly up-regulated in Foxo3™”~ HSPC (Fig. 7E).
Although the increased expression of XRCC6 (Ku70) (and pos-
sibly XRCC5 (Ku80)) might be part of a compensatory response
(48), the source of this increase is unclear. These results suggest
that loss of FOXO3 does not exacerbate ionizing radiation-in-
duced DNA damage or alternatively does not compromise the
DNA damage response machinery in response to ionizing
radiation.

Altogether, our data identify FOXO3 as a regulator of DNA
damage repair in HSPC under homeostasis and suggest that the
observed DNA breaks (Figs. 1, B, D, and E, 2, 3, and 5G) are due
to both an increase in endogenous ROS levels and a deficiency
in oxidative DNA repair machinery in Foxo3”~ HSPCs (Fig. 8,
Model).

Discussion

We showed here that Foxo3~"~ HSPCs accumulate damaged
DNA under homeostatic conditions. We also showed that the
damaged DNA in homeostatic Foxo3~”~ HSPCs is mediated by
both elevated endogenous ROS and a defective base excision
DNA repair program. Additionally, our data suggest that the
Fox03™"~ HSC G,/M delay is mediated primarily by elevated
ROS. These results are consistent with and extend the scope of
known FOXO3 (FOXO) functions in DNA damage response
pathways (14, 48 —-50).

Our findings show that FOXO3 modulates a gene network
related to BER and NER oxidative DNA repair, because a num-
ber of related genes are down-regulated in Foxo3 "~ LSK cells
(Fig. 5A). We were able to reveal oxidative DNA damage in
Foxo3~/~ hematopoietic stem and progenitor cells using the
FLARE hOGG1 assay, in which the human OGG1 glycosylase is
introduced into the comet assay to induce DNA breaks at loca-
tions of oxidative base lesions (Fig. 2). Furthermore, the hyper-
sensitive BER molecular beacon assay that we recently devel-
oped (39) enabled us to show that OGG1-mediated glycosylase
activity, which mediates the removal of the 8-0x0-dG lesion, is
reduced in a population of Foxo3 /" hematopoietic cells
enriched for stem and progenitor cells (Fig. 5, F and G). The
reduction in OGG1 glycosylase activity in Foxo3™"~ LSK was
despite similar Ogg1 transcript expression in Foxo3 ™"~ as com-
pared with WT LSK cells (Fig. 5A4). Furthermore, we found that
the expression of the XRCC1 protein, which is critical for BER,
is highly reduced in Foxo3 ™"~ Lin~ cells (Fig. 6, Band C). Inter-
estingly, despite the reduction in transcript expression of both
XRCCI and Polf, only the XRCC1 protein was reduced in
Foxo3™”~ LSK cells (Fig. 6). As we had noted previously, the
transcript expression in primary Foxo3 ”~ hematopoietic cells
may not always fully correlate with the protein expression (41,
42). These results together implicate FOXO3 in the regulation
of BER in hematopoietic stem and progenitor cells.
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FIGURE 7. Foxo3~’~ hematopoietic stem and progenitor cells respond normally to ionizing radiation insult. A, yH2AX staining on WT and Foxo3™ "~ LSK
cells that were submitted to 10 Gy of ionizing radiation, kept in culture, and analyzed after 2 h. B, quantification of yH2AX levels by flow cytometry in WT
and Foxo3~/~ c-Kit™ and LSK cells 2 h after 4 Gy ionizing radiation dose (n =3 per group). Plot presents geometric mean values of FITC fluorescence that
were normalized to basal WT levels. C, representative comet assay pictures of LSK cells isolated from control (C) or 4 Gy irradiated (/R) WT and Foxo3 ™"~
animals after 6 or 24 h and comet assay quantification (D). E, QRT-PCR analysis of DNA breaks repair genes involved in HR (Brcal, Brca2, and Rad51) or
non-homologous end-joining (Xrcc5 and Xrcc6) in Foxo3 ™"~ c-Kit™ or LSK cells under homeostatic conditions. Actnb was used as an internal control, and
expression was normalized to that of WT samples. Data are expressed as mean = S.D. Student’s t test. *, p < 0.05; **, p < 0.001 ; **¥*, p < 0.0002; ns, not

significant.

These combined findings raise the possibility that compro-
mised FOXO3 function, as it might occur in aging stem cells
(33, 34) or in the context of stem cell malignancies, is likely to
sustain damaged DNA and mitochondrial defects (36) and fur-
ther contribute to stem cell aging and/or malignancy (18, 23, 29,
30, 32-34, 36). In agreement with this, FOXO3 inactivation is
proposed to be one of the early events in the evolution of mye-
loid and perhaps other malignancies (18, 51). One of the impli-
cations of these combined results (36) is that elevated ROS, as a
result of both mitochondrial defects and reduced anti-oxidant
enzyme expression, contribute significantly to some, specifi-
cally to enhanced myeloproliferation, but not all of the main
Foxo3™"~ HSC defects. They also suggest that ROS-mediated
Foxo3~"~ HSC DNA damage may constitute a partially reversible
phase in this process, because NAC treatment decreased DNA
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break levels and rescued HSPC from the cell cycle G,/M delay
(Figs. 3 and 4). However, potential clinical applications of these
findings warrant careful consideration. As FOXO3 loss negatively
affects the BER pathway (Fig. 5), the normalization of HSC cycling
and G,/M correction that followed antioxidant therapy (Fig. 4)
might constitute only a transient response, in agreement with our
recent report showing that NAC treatment is unable to rescue
the long term reconstitution ability of Foxo3™”~ HSC (36).

Data presented here, combined with published work (33, 34,
36, 52, 53), depict FOXO3 as a molecular node that wires
together mitochondrial metabolism (36), ROS signaling, and
DNA damage repair mechanisms for the maintenance of
healthy HSPC. These collective findings join growing evidence
in support of the notion that FOXO3 serves as a barrier to
genomic instability in HSPC (52, 53).
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FIGURE 8. Model of FOX0O3 modulation of genomic integrity in hemato-
poietic stem and progenitor cells. In normal HSPC, FOXO3 guards genome
integrity by maintaining a gene expression program that represses ROS accu-
mulation (anti-oxidant genes), promotes DNA repair (BER and NER genes),
and sustains mitochondrial metabolism. Foxo3 ™/~ HSPC accumulates defec-
tive mitochondria and elevates ROS and DNA damage leading to cell cycle
impairment and potential genomic instability.

Experimental Procedures

Mice—All mice were from the C57BL/6 genetic background
and were 10 —12 weeks old (13). Protocols were approved by the
Institutional Animal Care and Use Committee of the Icahn
School of Medicine at Mount Sinai. NAC treatment was per-
formed as described previously (13, 21).

Flow Cytometry and Hematopoietic Stem Cell Isolation—
Antibody staining and bone marrow cell preparation for FACS
sorting were performed as described previously (13, 21, 33).
Briefly, for isolation of LSK and c-Kit™ cells, freshly isolated
bone marrow cells were stained with biotinylated hematopoi-
etic multiple lineage monoclonal antibody mixture (Stem Cell
Technologies), PE-Sca-1, APC-c-Kit (BD Biosciences), and
incubated with Pacific Blue™™ streptavidin secondary antibody.
In addition to LSK staining and to isolate the long term HSC
(LSK-F1k2~CD34 ), total bone marrow cells were stained with
FITC-CD34 (eBioscience) and PE-Cy5-Flk2 (BD Biosciences)
antibodies. Analyses and FACS sorting were performed at the
Flow Cytometry Core at Icahn School of Medicine at Mount
Sinai.

QRT-PCR—RNA from FACS-sorted c-Kit™* or LSK cells was
extracted using the EasySep MicroPlus RNA extraction kit
(Qiagen). RNA was retro-transcribed using Superscriptll
(Invitrogen) and cDNA corresponding to 300 cells was used per
well for QRT-PCRs with specific primers (Table 1). QRT-PCRs
were run on an ABI7900 thermal cycler (Applied Biosystems).

In Vitro Hydrogen Peroxide (H,O.,) Treatment of LSK Cells—
FACS-sorted WT and Foxo3 "~ LSK cells were incubated in
StemSpan SFEM (Stem Cell Technology) and treated with or
without 100 um of H,O,, washed extensively after 1 h, and
either analyzed immediately (1 h) or cultured for further anal-
yses at the indicated (2 and 4 h) time points by comet assay.

TBI—Mice were submitted to total body irradiation (4 Gy)
(Icahn School of Medicine at Mount Sinai Irradiator Shared
Resource Facility). Mice were sacrificed, and bone marrow cells
were collected from non-irradiated controls or after 6 or 24 h
post-TBI, and live LSK cells were FACS sorted and submitted
immediately to comet assay.
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Measurement of Intracellular ROS—ROS measurements
were performed on freshly isolated bone marrow cells using 3
uM 2',7"-dichlorofluorescein diacetate (Molecular Probes), as
described previously (13, 21, 33).

Cell Cycle Analysis—Freshly isolated (2 X 10°) bone marrow
cells from in vivo BrdU-injected mice (one pulse, 19 h before
sacrifice) were stained for LSK, fixed, permeabilized, and incu-
bated with anti-BrdU antibody (Pharmingen) and co-stained
with 7-AAD, following the manufacturer’s instructions. Sam-
ples were immediately analyzed by flow cytometry. To measure
the percentage of quiescent cells (G, phase), freshly isolated
(2 X 10°) bone marrow cells were stained for LT-HSC (LSK-
CD347), fixed, permeabilized, incubated with anti-Ki67-PE-
conjugated antibody (Pharmingen), and co-stained with 4’,6-
diamidino-2-phenylindole (DAPI) (1 ug/ml).

Apoptosis Assay—Freshly FACS-sorted control and/or 1 h of
H,O,-treated LSK cells were suspended in 1 X annexin V-bind-
ing buffer containing 2.5 ul of annexin V-APC. Samples were
co-stained with 7-AAD, following the manufacturer’s instruc-
tions (BD Biosciences), and analyzed immediately by FACS.

YH2AX Analysis by Immunofluorescence Staining and Flow
Cytometry—WT and Foxo3 ’~ FACS-sorted LSK cells were
cytospun onto glass slides. YH2AX nuclear foci were analyzed
by immunofluorescence staining using a rabbit polyclonal anti-
phospho H2AX (Ser-139) (Millipore) and imaged on a Leica
DMRA? fluorescence microscope using X400 oil immersion
objective. Freshly isolated bone marrow cells stained for HSPC
were fixed in 2% paraformaldehyde and stained overnight at
4 °C with 1:100 mouse monoclonal anti-H2AX pS139 FITC
conjugate (Millipore) (or anti-H2AX pS139 APC conjugate,
Biolegend) in BLOCKO solution as described previously (54).
The samples were next diluted into PBS, 2% FBS and analyzed
by FACS.

Single Cell Gel Electrophoresis (Comet Assay) and FLARE™
Assay—FACS-sorted LSK cells were submitted to alkaline
comet assay using the Trevigen® CometAssay® kit following
the manufacturer’s instructions. Briefly, cells were mixed in
melted agarose, placed in glass slides, and allowed to jellify at
4 °C for 30 min. After that, slides were subsequently immersed
in lysis and unwinding solutions and immediately submitted to
electrophoresis at 4 °C in an alkaline electrophoresis solution,
pH 13. Finally, slides were dehydrated in 70% ethanol and
allowed to dry before analysis.

For the FLARE hOGG1 assay, prior to the alkaline electro-
phoresis step, cells in agarose were incubated with a 1:2 dilution
of human OGG1 glycosylase for 1 h at 37 °C to convert all oxi-
dized bases into DNA breaks. Slides were analyzed on a Leica
DMRA?2 fluorescence microscope (X100 objective). Comet
parameters were quantified using the CometScore software
(TriTek Corp). The parameter percentage (%) of DNA in tail
corresponds to the amount of pixels in the comet tail (migrated
DNA), whereas the Olive tail moment (Olive et al., (55)) corre-
sponds to the product of the tail length and the fraction of DNA
in the tail (intensity of the DNA in the tail).

DNA Oxidation Analysis—FACS-sorted LSK cells were incu-
bated in the kit staining solution containing 1:20 dilution of a
specific FITC-conjugated probe to 8-OHdG, in accordance
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TABLE 1

Mouse primer sequences
Gene Forward primer (5" — 3') Reverse primer (5" — 3')
Apexl TTATGGCATTGGCGAGGAAGA CCAACGCTGTCGGTATTCCA
Brcal TTGGAACTGATCAAAGAACCTGT ACATTGTGAAGGCCCTTTCTT
Brca2 GGGAGTTGAAGTGGATCCTG GGAGAGTCAGCAGGCGTTAC
Fenl CACTGCTAGCTGCTTAAGGCT GGAGCAATGGCTTCTTCCTACC
Ligl GACGCCTGCTATCAATCGGT ATCAGTTGTACCTTTTCCCTGGC
Lig3 CTTTTCAGCAGCAAAACCCAA CGGAACTCTCGTAGCAGACA
Nthll CAAGATGGCACACTTGGCTA CTCTTCTGGGGTCTTGGTCA
Oggl ATTCCAAGGTGTGAGACTGCT ATGAGTCGAGGTCCAAAGGC
Parpl CTTGAGCAGATGCCCTCCAA CTCTTCGTCCTGGCCATAGTC
PolB TCTGTCAAAGGGTGAAACAAAG GATCTTTGGGGATCAACCTG
Pole3 CCCGAGGACCTAAATCTGCC TTGCGAAGTTATTGGCACAGG
Rad51 AACCCATTGGAGGGAACATCA GATTCTGGTCTCCCCTCTTCC
Xpa AAAGCTACAGGTGGTAAAGCG GCTTCTTATTGCTCGCCGC
Xpc GTGGGCTGAGACCTTGAGAC TGCACGCAATCCCTGGAATA
Xrecl TCTGTGGTCCTACAGTTGGAGA AAAATGCGAACACGGTTGGG
XreeS TTGGTGTAGCCTTCCCTTACA GTATTGCCGCAAGTCTTCCA
Xrec6 ACATGATGGAGTCGGAGCAA ACTCATCTGCCAGGGAACC

with the manufacturer’s instructions (OxyDNA assay kit,
Calbiochem®).

Cell Pellet and Lysate Preparation for BER Molecular Bea-
con Assay—Approximately 6 X 10° lineage-negative (Lin—)
cells from WT and Foxo3™ /™ mice (six mice per group) were
collected and pelleted at 228 X g for 5 min. The cell pellets
were washed once with PBS and then flash-frozen and kept
at —80 °C. Whole cell lysates were prepared by a freeze-thaw
method. Briefly, cells were resuspended in 150 ul of the BER
molecular beacon reaction buffer (HEPES 25 mwm, pH 7.8,
KCI 150 mm, EDTA 0.5 mm, glycerol 1%, DTT 0.5 mm, 1X
protease inhibitor (Pierce, catalog no. 539131)). The cell sus-
pension was then frozen on dry ice for 5 min and then
thawed in a 37 °C water bath for 5 min followed by vortexing
at the maximum speed for 30 s. Cells were frozen and thawed
for three cycles and then centrifuged at 16,400 rpm for 5 min
to remove cellular debris. The protein concentration of each
cell lysate was measured. Lysates were diluted with BER
molecular beacon reaction buffer to a final concentration of
0.4 mg/ml and immediately used for the activity assay as
detailed below (39).

BER Molecular Beacon Assay and Data Analysis—OGG1-
mediated glycosylase activity was measured by a BER molec-
ular beacon assay, essentially as we have described previ-
ously (39). Briefly, an OGG1 substrate (the 8-oxo-dG/A
beacon, 5 ul, 200 nm) was added to the whole cell lysate (20
wl) that was prepared in BER molecular beacon reaction
buffer (above). The reaction was performed at 37 °C using a
StepOnePlus QRT-PCR machine (Applied Biosystems). Flu-
orescence was measured for three technical replicates every
20 s for 1 h and normalized to the signal from the completely
denatured beacon within each well, as in previously pub-
lished methods (39).

Western Blotting Analysis—Lineage-negative bone marrow
depleted of mature cells and enriched for HSPC were lysed
into 2X Laemmli buffer with 100 mm DTT. Proteins were
resolved on SDS-PAGE, transferred to nitrocellulose mem-
branes, and incubated with anti-POLB (1:3000) (Thermo
Fisher, MA5-13899), anti-XRCC1 (1:3000; Bethyl, A300-
065A), or anti-tubulin (1:1000; Calbiochem, CP06) repli-
cates every 20 s for 1 h, normalized to the signal from the
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completely denatured beacon within each well, as in meth-
ods published previously (39).
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